Manganese(III)-Based Oxidative Free-Radical Tandem and Triple Cyclizations

Mark A. Dombroski, Steven A. Kates, and Barry B. Snider*
Contribution from the Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254. Received August 11, 1989

Abstract

Tandem oxidative free-radical cyclization of 1 a with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in acetic acid at $25^{\circ} \mathrm{C}$ gives bicyclo[3.2.1]octane $7 \mathbf{a}$ in 86% yield. Oxidation of the β-ketoester gives the enol radical $\mathbf{2 a}$ which undergoes 6 -endo cyclization to give tertiary radical 3a. A second cyclization gives a mixture of primary radicals $\mathbf{5 a}$ which is oxidized directly to alkene 7 a by $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. This reaction has been used to prepare bicyclo[3.2.1]octanones $7 \mathrm{~b}-\mathrm{e}$. Introduction of methyl substituents on the chain leads selectively to 18a-c with an axial methyl group establishing that the (E)-enol radical 15 is formed selectively. Oxidation of 25 leads selectively to the exo-radical 26 which undergoes an oxidative elimination with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ with high selectivity for the Hofmann isomer 28. trans-Hydrindanone 52 is formed selectively from Z isomer $\mathbf{4 7 a}$. cis-Hydrindanones $\mathbf{6 9 a - c}$ are formed selectively from dienes $\mathbf{6 5 a}-\mathrm{c}$. Triple oxidative cyclizations can also be carried out efficiently. Trienes 38 and 58 are converted to tricyclics 41 (39%) and 61 (60%), respectively.

Free-radical cyclizations of alkenes have recently been developed into a valuable method for the synthesis of cyclic compounds. ${ }^{1}$ Tandem and triple free-radical cyclizations offer a particularly attractive route to polycyclic compounds from dienes and trienes. Free-radical cyclizations have most frequently been initiated by reduction of a halide to a radical with $\mathrm{R}_{3} \mathrm{SnH}$ and terminated by reduction of the cyclic radical with $\mathrm{R}_{3} \mathrm{SnH}$ to a hydrocarbon. This approach is limited since a relatively unfunctionalized product resulting from a net two-electron reduction is produced. Oxidative free-radical cyclization in which the initial radical is generated oxidatively and/or the cyclic radical is oxidized to terminate the reaction have considerable synthetic potential since more highly functionalized products can be prepared from simpler precursors. Although some early examples are known, ${ }^{2}$ it is only recently that several classes of such reactions have been developed. ${ }^{1 g, 3,4}$

Heiba and Dessau ${ }^{6, \mathrm{~d}}$ and Bush and Finkbeiner ${ }^{7}$ originally demonstrated that acetic acid is oxidized by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{\mathrm{S}}$ in acetic acid at reflux to the carboxymethyl radical which adds to alkenes to give a radical which is oxidized by a second equivalent of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ to give a γ-lactone. The mechanism of this reaction has been extensively explored and further synthetic applications developed by Heiba and Dessau, ${ }^{6}$ Kooyman, ${ }^{8}$ Nikishin

[^0]and Vinogradov, ${ }^{9}$ McQuillin, ${ }^{10}$ Fristad, ${ }^{11}$ Corey, ${ }^{12}$ and others. ${ }^{12}$ More recently, Heiba and Dessau ${ }^{6 e}$ and Nikishin and Vinogra-dover.f.h-k,m have shown that $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ mediated oxidative addition of β-dicarbonyl compounds to alkenes occurs efficiently at $25-70^{\circ} \mathrm{C}$.

We have found that oxidation of unsaturated β-ketoesters with manganese(III) is an efficient method for initiation of oxidative free-radical cyclizations. ${ }^{13,14}$ In the preceding paper in this series
(7) Bush, J. B., Jr.; Finkbeiner, H. J. Am. Chem. Soc. 1968, $90,5903$.
(8) van der Ploeg, R. E.; de Korte, R. W.; Kooyman, E. C. J. Catal. 1968, 10, 52.
(9) (a) Nikishin, G. I.; Vinogradov, M. G.; Il'ina, G. P. Synthesis 1972, 376. (b) Nikishin, G. I.; Vinogradov, M. G.; Il'ina, G. P. J. Org. Chem. USSR 1972, 8, 1422; Zhur. Org. Khim. 1972, 8, 1401 . (c) Vinogradov, M. G.; Il'ina, G. P.; Ignatenko, A. V.; Nikishin, G. I. Ibid. 1972, 8, 1425; Ibid. 1972, 8, 1403. (d) Vinogradov, M. G.; Verenchikov, S. P.; Nikishin, G. I. Ibid. 1972, 8, 2515; Ibid. 1972, 8, 2467. (e) Nikishin, G. I.; Vinogradov, M. G.;; Fedorova, T. M. J. Chem. Soc., Chem. Commun. 1973, 693. (f) Vinogradov, M. G.; Fedorova, T. M.; Nikishin, G. I. J. Org. Chem. USSR 1976, 12, 1183; Zhur. Org. Khim. 1976, 12, 1175. (g) Vinogradov, M. G.; Verenchikov, S. P.; Nikishin, G. I. Ibid. 1976, 12, 2245; Ibid. 1976, 12, 2313. (h) Vinogradov, M. G.; Petrenko, O. N.; Verenchikov, S. P.; Nikishin, G. I. Bull. Natl. Acad. Sci. USSR Ser. Chem. 1979, 1782; Izv. Akad. Nauk SSSR Ser. Khim. 1979, 1916. (i) Vinogradov, M. G.; Pogosyan, M. S.; Shteinshneider, A. Y.; Nikishin, G. I. Ibid. 1981, 1703; Ibid. 1981, 2077. (j) Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. Ibid. 1982, 2036; Ibid. 1982, 2313. (k) Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. Ibid. 1984, 334; Ibid. 1984, 375. (1) Vinogradov, M. G.; Kovalev, I. P.; Nikishin, G. I. Ibid. 1984, 342; Ibid. 1984, 384. (m) Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. Ibid. 1984, 1884; Ibid. 1984, 2065.
(10) (a) McQuillin, F. J.; Wood, M. J. Chem. Res. (S) 1977, 61. (b) McQuillin, F. J.; Wood, M. J. Chem. Soc., Perkin Trans. l 1976, 1762.
(11) (a) Fristad, W. E.; Peterson, J. R. J. Org. Chem. 1985, 50, 10. (b) Fristad, W. E.; Hershberger, S. S. Ibid. 1985, 50, 1026. (c) Fristad, W. E.; Peterson, J. R.; Ernst, A. B. Ibid. 1985, 50, 3143. (d) Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron 1986, 42, 3429. (e) Yang, F. Z.; Trost, M. K.; Fristad, W. E. Tetrahedron Lett. 1987, 28, 1493.
(12) For other current studies on intermolecular $\mathrm{Mn}(\mathrm{OAc})_{3}$ oxidative additions, see: (a) Ito, N.; Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn 1983, 56, 3527. (b) Okano, M. Bull. Chem. Soc. Jpn. 1976, 49, 1041. (c) Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1985, 26, 4291. (d) Corey, E J.; Ghosh, A. K. Ibid. 1987, 28, 175. (e) Corey, E. J.; Ghosh, A. K. Chem. Lett. 1987, 223. (f) Citterio, A.; Santi, R.; Fiorani, T.; Strologo, S. J. Org Chem. 1989, 54, 2703.
(13) For previous papers in this series, see: (a) Snider, B. B.; Mohan, R M.; Kates, S. A. J. Org. Chem. 1985, 50,3659 . (b) Snider, B. B.; Mohan, R. M.; Kates, S. A. Tetrahedron Lett. 1987, 28, 841 . (c) Mohan, R.; Kates, S. A.; Dombroski, M.; Snider, B. B. Ibid. 1987, 28, 845. (d) Snider, B. B. Patricia. J. J.; Kates, S. A. J. Org. Chem. 1988, 53, 2137. (e) Snider, B. B. Dombroski, M. A. J. Org. Chem. 1987, 52, 5487. (f) Snider, B. B.; Patricia, J. J. J. Org. Chem. 1989, 54, 38. (g) Merritt, J. E.; Sasson, M.; Kates, S A.; Snider, B. B. Tetrahedron Lett. 1988, 29, 5209 . (h) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. In press.

Scheme I

our studies of the initiation, cyclization, and termination of monocyclization reactions are fully described. ${ }^{13 \mathrm{~h}}$ We report here our studies of tandem and triple oxidative free-radical cyclizations.

Results and Discussion

Formation of Bicyclo[3.2.1]octanes. We report here a new class of oxidative cyclizations in which two or three sequential cyclizations to double bonds generate a bicyclic cyclopentanemethyl radical which is then oxidized to generate a methylenecyclopentane or vinylcyclopentane. ${ }^{15}$ Alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate ${ }^{17}$ with methallyl chloride gives diene 1 a in 42% yield. Reaction of β-ketoester 1 a , as a 0.1 M solution in acetic acid, with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{O}-$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ for 26 h at room temperature gives an 86% yield of 7 a .

Oxidation of the β-ketoester of $\mathbf{1 a}$ by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gives the radical 2a, possibly as a manganese complex. ${ }^{13 d}$ Cyclization gives exclusively the tertiary cyclohexyl radical 3a. ${ }^{1}$ The primary cyclopentanemethyl radical $\mathbf{8 a}$ is not formed. There are several reasons for the selective formation of 3a. Carbonyl-substituted radicals are electrophilic and should show a greater preference for the formation of a tertiary radical than a normal, nucleophilic alkyl radical. Steric interactions favor the formation of 3a since
(14) (a) For other manganese(III) based oxidative free-radical cyclizations, see: (a) Corey, E. J.; Kang, M.-C. J. Am. Chem. Soc. 1984, 106, 5384. (b) Ernst, A. B.; Fristad, W. E. Tetrahedron Lett. 1985, 26, 3761. (c) Peterson, J. R.; Egler, R. S.; Horsley, D. B.; Winter, T. J. Tetrahedron Lett. 1987, 28 , 6109. (d) Paquette, L. A.; Schaefer, A. G.; Springer, J. P. Tetrahedron 1987, 43, 5567. (e) Surzur, J.-M.; Bertrand, M. P. Pure Appl. Chem. 1988, 60, 1659. (f) Oumar-Mahamat, H.; Moustrou, C.; Surzur, J.-M.; Bertrand, M. P. Tetrahedron Lett. 1989, 30, 331. (g) Citterio, A.; Cerati, A.; Sebastiano, R.; Finzi, C. Tetrahedron Lett. 1989, 30, 1289. (h) Citterio, A.; Fancelli, D.; Finzi, C.; Pesce, L.; Santi, R. J. Org. Chem. 1989, 54, 2713. (i) Rama Rao, A. V.; Rao, B. V.; Reddy, D. R.; Singh, A. K. J. Chem. Soc., Chem. Commun. 1989, 400.
(15) For a preliminary communication, see: ref $13 e$.
(16) Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082.
(17) Lauer, W. H.; Kilburn, E. l. J. Am. Chem. Soc. 1937, 59, 2586. Schechter, M. S.; Green, N.; LaForge, F. B. J. Am. Chem. Soc. 1949, 7l, 3165.
formation of $8 \mathbf{a}$ would require the formation of a bond between two fully substituted carbons, a process shown to be slow in elegant kinetic studies by Beckwith. ${ }^{14, e, e^{18}}$ Finally, Curran ${ }^{1 g, 19}$ and Clive ${ }^{20}$ have shown that the presence of a carbonyl group in the forming ring favors the production of the 6 -endo product.
Monocyclic radical 3a, a normal alkyl radical unperturbed by stabilizing groups or manganese, cyclizes, as expected. ${ }^{1,18}$ to give exclusively the cyclopentanemethyl radical $\mathbf{5 a}$. Cyclopentanemethyl radical 5 a undergoes the expected reaction ${ }^{21}$ with $\mathrm{Cu}(\mathrm{O}$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ to give organocopper intermediate 6 a which undergoes facile β-hydride elimination to give 7a. The use of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is crucial to the success of this reaction. The unsaturated product 7 a is formed in only $\approx 14 \%$ yield in the absence of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The major products are oligomer and a mixture of saturated products formed from 5 a by abstraction of a hydrogen atom from the medium.
The success of this reaction depends upon the fact that the cyclizations of $2 a$ to give $3 a$ and $3 a$ to give $5 a$ are faster than the oxidation of either 2 a or 3 a by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}(\mathrm{O}-$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Oxidation of electron-deficient radical 2a does not occur since it would give an enol cation. Oxidation of alkyl radicals by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is slow. Tertiary radicals are oxidized to cations; primary and secondary radicals usually abstract a hydrogen atom faster than they are oxidized. Use of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as a co-oxidant in $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ oxidations has been developed by Heiba and Dessau ${ }^{6}$ and Nikishin and Vinogradov ${ }^{9}$ to insure oxidative termination. $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is a thermodynamically weak oxidant that nevertheless reacts very rapidly with radicals to give copper(III) intermediates such as $\mathbf{6 a}$ that react further to give alkenes such as 7a. The CuOAc produced in the oxidation is reoxidized by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
A priori, it was not clear that cyclization of 3a to 5a would be faster than oxidation to give either $\mathbf{4}$ or isomers with an endocyclic double bond. Oxidation of primary radicals to alkenes by $\mathrm{Cu}-$ (OAc) $2_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ occurs with a rate constant of $1-3 \times 10^{6} \mathrm{M}^{-1}$ s^{-1}.21c,, $22-25 \quad$ Cyclization of the 5 -hexenyl radical to cyclopentanemethyl radical occurs with a rate constant of 10^{5}. Therefore oxidation of 3 a by $10^{-1} \mathrm{M}$ cupric ion could have been expected to compete very effectively with cyclization to $\mathbf{5 a}$. The absence of 4 even in the presence of $10^{-1} \mathrm{M}$ cupric ion implies that the unimolecular rate constant for cyclization of $\mathbf{3 a}$ is significantly greater than the bimolecular rate constant for oxidation of $\mathbf{3 a}$ by cupric ion. A more complete analysis is precluded by the lack of rate data for the oxidation of tertiary radicals by cupric ion and for the cyclization of radicals to form bridged rings such as $\mathbf{5 a}$.

Radical cyclizations are compatible with a wide variety of functional groups. Alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate ${ }^{17}$ with 2,3-dichloropropene, 3-chloro-2-((diethylphosphoryl)oxy)propene. ${ }^{26}$ and 2-chloromethyl-3-(trimethyl-
(18) (a) Beckwith, A. L. J. In Landolt-Börnstein, New Series, Group 2, Vol 13a; Fischer, H., Ed.; Springer-Verlag: Berlin, 1984; pp 252-317. (b) Beckwith, A. L. J.; Blair, A. I.; Phillipou, G. Tetrahedron Lett. 1974, 2251. (c) Beckwith, A. L. J.; Phillipou, G.; Serelis, A. K. Tetrahedron Lett. 1981, 22, 2811. (d) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 4l, 3925. (19) Curran, D. P.; Chang, C.-T. J. Org. Chem. 1989, 54, 3140.
(20) Clive, D. L. J.; Cheshire, D. R. J. Chem. Soc., Chem. Commun. 1987, 1520.
(21) (a) Kochi, J. K.; Bemis, A.; Jenkins, C. L. J. Am. Chem. Soc. 1968, 90, 4616. (b) Kochi, J. K.; Bacha, J. D. J. Org. Chem. 1968, 33, 2746. (c) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 843. (d) Kochi, J. K. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Chapter 11. (e) Nonhebel, D. C. In Essays on Free-Radical Chemistry, Special Publication 24; Chemical Society: London, 1970; p 409. (f) Kochi, J. K. Science 1967, $155,415$.
(22) Kochi, J. K. In Frontiers of Free-Radical Chemistry; Pryor, W. A., Ed.; Academic Press: New York, 1980; pp 297-354.
(23) The rate constant for oxidation of radicals by cupric ion has also been estimated at $10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. 2^{4} This value has been shown to be too high: ref le, pp 176-177.
(24) Kochi, J. K.; Gilliom, R. D. J. Am. Chem. Soc. 1964, 86, 5251. Kochi, J. K.; Subramanian, R. V. J. Am. Chem. Soc. 1965, 87, 4855.
(25) Organic radicals react with cupric ion to give copper(III) complexes in aqueous solution with rate constants of 7×10^{5} to $8 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ depending on the structure of the radical: Freiberg, M.; Meyerstein, D. J. Chem. Soc., Faraday Trans. l 1980, 76, 1825.

Scheme II

silyl)propene gives $\mathbf{1 b}, \mathbf{1 c}$, and $\mathbf{1 d}$ in $83 \%, 55 \%$, and 38% yield, respectively. Oxidative cyclization of $\mathbf{1 b}$ and $\mathbf{1 c}$, as described above for 1 a , gives 7 b and 7 c in 72% and 77% yield, respectively. The preparation of 7 c in two steps provides a very effective route to a fully functionalized CD ring system of gibberellic acid containing a ketone and an ester which could be used to elaborate the B ring. ${ }^{27}$ Oxidative cyclization of $\mathbf{1 d}$ gives a mixture of the expected product 7d (30%), monocyclic diene 4 (11%), and desilylated product 7a. The monocyclic product 4 is formed by oxidation of 3 d to the cation followed by desilylation. Oxidation of $\mathbf{3 d}$ is accelerated by the presence of the cation-stabilizing β-trimethylsilyl group. The desilylated product $7 \mathbf{a}$ is probably formed by protodesilylation of 1 d to give 1 la which then undergoes a normal oxidative cyclization.
β-Ketoester $1 \mathrm{e}^{28}$ was prepared in 44% yield by the alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate ${ }^{17}$ with allyl bromide. Reaction of 1 e as described above for 5 h at $25^{\circ} \mathrm{C}$ gives 7 e (43\%) and 10 (16\%). As we have previously reported, ${ }^{13 c}$ oxidative cyclization to an unsubstituted terminal double bond gives an $\approx 9: 4$ mixture of secondary cyclohexyl radical 3 e and primary cyclopentanemethyl radical $8 \beta \mathrm{e}$. Radical 3 e is converted to 7 e as described above for 3a. Addition of the radical center in $8 \beta \mathbf{e}$ to the double bond will be very slow since a trans fused bicyclo[3.3.0]octane would be formed. ${ }^{18 c}$ Presumably, the radical center reacts with cupric ion to give an intermediate that reacts with the carbonyl group to give cation 9 which is hydrolyzed to give $10 .{ }^{29}$

Fristad has shown that the carboxylic acid is involved in the oxidation of γ-carboxypropyl radicals to γ-lactones by Mn (III). ${ }^{\text {Id }}$ The carbocation is not an intermediate since Mn (III) oxidizes secondary radicals very slowly. On the other hand, esters do not generally assist the oxidation of proximate radicals by Mn (III). ${ }^{6,11}$ However, the carbomethoxy group in $8 \beta \mathrm{e}$ must be involved in the oxidation step since oxidation of an isolated primary radical by cupric ion should give a methylenecyclopentane. The formation of $\mathbf{1 0}$ suggests that the proximity of the ester carbonyl and radical center in $8 \beta e$ facilitates the formation of 9 . Oxidation of the closely related radical 12 with $\mathrm{Cu}(\mathrm{II})$ gives mainly 13 ; only a small amount of the corresponding lactone is formed.

Mixtures of stereoisomers have been obtained in analogous oxidative cyclizations that give cyclopentanemethyl radicals. ${ }^{13 c, h}$ The cyclization of 2 e should have given $60-80 \%$ of $8 \beta e$ and $20-40 \%$ of $8 \alpha e$. Radical 8α e should have cyclized rapidly to give cis-11. Oxidation would give the isolable methylenecyclopentane which was not observed. This suggests that $8 \alpha e$ was not formed; it is possible that $8 \alpha e$ was formed and converted to uncharacterized products.

Determination of Enol Radical Geometry. Methyl groups were introduced into the substrate in an attempt to determine the geometry of the transition state leading to 3a. Alkylation of methyl 4,6-dimethyl-3-oxo-6-heptenoate ${ }^{13 \mathrm{f}}$ and methyl 5-methyl-3-oxo-6-heptenoate ${ }^{13 f}$ with allyl bromide affords $\mathbf{1 4 a}(56 \%)$ and $\mathbf{1 4 b}$ (50%) . β-Ketoester $14 \mathrm{c}(42 \%)$ was prepared by alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate with (E)-1-bromo-2-methyl-2-butene. Cyclization of all three substrates leads pre-

[^1]

Scheme III

dominantly to 18 with an axial methyl group.
Oxidative cyclization of 14 a gives a $5: 1$ mixture of $\mathbf{1 8 a}$ and 19 a. Chromatographic purification results in partial equilibration to give a $2: 1$ mixture of 18 a and 19 a in 57% yield. Further equilibration with potassium carbonate in methanol converts the mixture to pure 19a. (Adduct 19a formed by equilibration of $\mathbf{1 8 a}$ must be the enantiomer of 19a formed directly by cyclization of 14a. This cannot be detected since the starting material is racemic.) The stereochemistry of 18 a and 19 a can be convincingly assigned based on their relative stability. Molecular mechanics calculations ${ }^{30}$ indicate that 19 a is more stable than the boat conformer of 18 a by $2.2 \mathrm{kcal} / \mathrm{mol}$ which in turn is more stable than the chair conformer of 18 a by $0.3 \mathrm{kcal} / \mathrm{mol}$.

The stereochemistry and conformational assignment of 18a and 19a can be confirmed by analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The axial, endo methine H 3 in 19a is coupled to exo- and endo- H 4 with $J=12.3$ and 7.8 Hz , respectively, as expected for axial-axial and axial-equatorial couplings. ${ }^{30}$ The ${ }^{13} \mathrm{C}$ NMR spectrum shows shifts from that of 7a expected for the introduction of an equatorial methyl group: $\mathrm{Cl}(-0.1), \mathrm{C} 3(3.8), \mathrm{C} 4$ (9.7), C5 (0.5), and C8 (0.7). The exo-methine H 3 in 18 a is coupled to exo- and endo- H 4 with $J=10.5$ and 5.4 Hz which is not consistent with equato-rial-axial and equatorial-equatorial couplings in the chair conformer but is entirely consistent with expected coupling constants of 9.6 and 7.4 Hz expected for the boat conformer. ${ }^{30}$ The ${ }^{13} \mathrm{C}$ spectrum of $18 a$ is not consistent with that calculated for the chair conformer with use of the spectrum of 7a and the expected shifts of an axial methyl group. However, the ${ }^{13} \mathrm{C}$ NMR spectrum of endo-3-methylbicyclo[3.2.1]octane is also not consistent with that expected for the chair conformer which led Lippmaa and coworkers to propose that it exists predominantly in the boat conformation. ${ }^{31}$

Oxidative cyclization of $\mathbf{1 4 b}$ gives an inseparable $5: 1$ mixture of $\mathbf{1 8 b}$ and $\mathbf{1 9 b}$ in 51% yield and 20 in 15% yield. The structure of the major isomer $\mathbf{1 8 b}$ was assigned based on analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Decoupling of the methyl group at $\delta 1.10$ indicated that the methine proton H 4 was coupled to H 3 -endo with $J=8.2 \mathrm{~Hz}$, to H 3 -exo with $J=2.8 \mathrm{~Hz}$, to H 5 with $J=2.8 \mathrm{~Hz}$, and to H 8 by a four-bond W coupling of 1.5 Hz . These vicinal coupling constants and the long-range coupling constant are only consistent with an equatorial H 4 . The ${ }^{13} \mathrm{C}$ NMR
(30) MMX (obtained from Serena Software, 489 Serena Lane, Bloomington, IN 47401) was used on a VAX 8650 . Updated versions of mODEL (obtained from Prof. Midland, University of California, Riverside, and Prof. Steliou, University of Montreal) were used for structure input and analysis. NMR coupling constants were calculated using mODEL on structures minimized with mмx.
(31) Lippmaa, E.; Pehk, T.; Belikova, N. A.; Bobyleva, A. A.; Kalinichenko, A. N.; Ordubadi, M. D.; Platê, A. F. Org. Magn. Reson. 1976, 8, 74.
spectrum of $\mathbf{1 8 b}$ shows shifts from that of $\mathbf{7 a}$ expected for the introduction of an axial methyl group: C3 (3.2), C4 (4.3), C5 (6.1), and C8 (-4.1). The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9 b}$ shows shifts from that of $7 a$ expected for the introduction of an equatorial methyl group: C 3 (8.3), C4 (4.0), C5 (6.2), and C8 (-0.1). The shielding of C8 by the axial methyl group in 18b but not by the equatorial methyl group in $\mathbf{1 9 b}$ is particularly significant.

The stereochemistry of 20 follows from the ${ }^{1} \mathrm{H}$ NMR absorption of H 3 at $\delta 2.11$ (dddq, $1, J=6.1,10.8,10.9,6.6$). These coupling constants are consistent only with the exo isomer 20. Furthermore, C 4 in 20 absorbs at $\delta 70.1$ only 0.8 ppm upfield from C 4 in 7 a . In the endo isomer, C4 should be shifted upfield by several ppm by the γ gauche effect. ${ }^{32}$

Oxidative cyclization of $\mathbf{1 4 c}$ gives an $11: 1$ mixture of 18 c and 19 c in 67% yield. The structure of 18 c follows from the ${ }^{1} \mathrm{H}$ NMR absorption of H 8 at $\delta 2.21(\mathrm{dq}, 1, J=2.0,7.0 \mathrm{~Hz})$. The unexpected coupling constant of 2.0 Hz is a four-bond W coupling with H 4 -endo indicating that H 8 is equatorial. The ${ }^{13} \mathrm{C}$ NMR spectra confirms the stereochemical assignment. C4 is shifted upfield to $\delta 34.3$ by the axial methyl group in 18c from $\delta 40.3$ in 7a and $\delta 40.0$ in 19c. The axial methyl group in 18c absorbs at $\delta 9.9$, while the equatorial methyl group in 19c absorbs at $\delta 12.8$. C7 is shifted upfield to $\delta 36.9$ in 19c by the γ gauche effect from δ 39.9 in 7 a and $\delta 40.0 \mathrm{in} \mathrm{18c}$.

The preferential formation of $18 \mathrm{a}-\mathrm{c}$ suggests that cyclization proceeds as shown in Scheme II. Oxidation of 14 gives the (E)-enol radical 15. Cyclization through a chair transition state gives 16 with an axial ester group and equatorial allyl and methyl groups. Chair inversion gives 17 with an axial allyl group which undergoes the second cyclization and oxidative elimination to give 18. We have shown that enolization of α-substituted β-ketoesters is the rate-determining step in the oxidation. ${ }^{13 \mathrm{~d}}$ Therefore enolization gives the (E)-enolate, which is rapidly oxidized to 15 , rather than the (Z)-enolate which could chelate to manganese. Although a chelated enolate appears to be intuitively preferred, in fact, O-alkylation of β-ketoester enolates often leads to E products. ${ }^{33}$

The minor products $19 \mathrm{a}-\mathrm{c}$ could be formed through a boat transition state or from the (Z)-enolate. The α-methyl ketone 19a could be formed by acid-catalyzed equilibration of 18a during the reaction. Minor products 19a and 19b could also be formed through a chair transition state with an axial methyl group. Minor product 19 c could be formed from the Z isomer of 14 c ; ${ }^{1} \mathrm{H}$ NMR analysis of $\mathbf{1 4 c}$ suggests that less than 3% of the Z isomer is present indicating that this is not the only source of 19 c .

Alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate ${ }^{17}$ with 1 -(bromomethyl)cyclohexene ${ }^{34}$ gives 21 in 41% yield. Oxidative cyclization of $\mathbf{2 1}$ as described above affords $\mathbf{2 4}$ in $\mathbf{7 3 \%}$ yield. The stereochemistry of 24 was assigned based on analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The aliphatic carbon of the two-carbon bridge absorbs at the same frequency in 7a (39.9δ) and 24 (40.5 δ) which indicates that the cyclohexane of 24 is on the side of the three carbon bridge. The γ gauche effect should shield this carbon by several ppm in the stereoisomer with the cyclohexane on the side of the two-carbon bridge. This assignment was confirmed by NOE experiments. Irradiation of the allylic methylene group at $\delta 2.80-2.95$ leads to an NOE enhancement of the methine proton on the one carbon bridge. The stereospecific formation of $\mathbf{2 4}$ is analogous to the formation of $\mathbf{1 8 c}$ from $\mathbf{1 4 c}$. The initial cyclization gives the monocyclic radical 22, with an axial ester group and an equatorial allyl group which then undergoes chair inversion to give 23 which cyclizes to 24.

Examination of the Stereochemistry of the Second Cyclization and the Regiochemistry of the Oxidative Elimination. The second

[^2]Scheme IV

cyclization in the sequence converting radical $\mathbf{3}$ to 5 presumably gives a mixture of isomers which are both converted to 7 by oxidative elimination with cupric ion. The cyclization of $\mathbf{2 5}$ was examined to determine the stereochemistry of the second cyclization and to determine the nature of the oxidation products obtained from secondary and tertiary radicals $\mathbf{2 6}$ and 27 . Alkylation of methyl 6 -methyl-3-oxo-6-heptenoate ${ }^{35}$ with crotyl bromide and prenyl bromide gives 25b and 25d in 53\% and 29\% yield. Alkylation of methyl 3 -oxo-6-heptenoate ${ }^{16}$ with crotyl bromide and prenyl bromide gives $\mathbf{2 5 a}$ and $\mathbf{2 5}$ c in 56% and 55% yield.

Oxidative cyclization of $\mathbf{2 5 a}$ affords $\mathbf{3 9 \%}$ of an inseparable 2:1 mixture of $\mathbf{2 8 a}$ and 29 a and 22% of $\mathbf{3 4 a}$. Oxidative cyclization of $\mathbf{2 5 b}$ affords 65% of an inseparable $\mathbf{2 : 1}$ mixture of $\mathbf{2 8 b}$ and $\mathbf{2 9 b}$ and 5% of $\mathbf{3 2 b}$. Oxidative cyclization of $\mathbf{2 5 c}$ affords 27% of an inseparable $5: 1$ mixture of $\mathbf{2 8 c}$ and $29 \mathrm{c}, 10 \%$ of a $4: 1$ mixture of $\mathbf{3 0 c}$ and 31c, and 19% of $\mathbf{3 4 c}$. Oxidative cyclization of 25d affords 45% of an inseparable $5: 1$ mixture of 28d and 29d and 24% of a $5: 1$ mixture of 30d and 31d. The formation of lactones $34 a$ and 34c from cyclopentanemethyl radical 33 is strictly analogous to the formation of 10 from 7e. Secondary radicals $26 a, b$ and $27 a, b$ undergo oxidative hydride elimination with high selectivity for the Hofmann product 28a,b and 29a,b as has been observed previously in lead tetraacetate-cupric acetate decarboxylations. ${ }^{36,37}$ Only traces of the more substituted product 32a,b are formed. Tertiary radicals 26 c , d and $\mathbf{2 7 c}$,d are oxidized by either manganic or cupric ion to the tertiary cations which lose a proton to give alkenes $28 \mathrm{c}, \mathrm{d}$ and 29 c ,d and react with the solvent to give acetates $\mathbf{3 0 c}, \mathbf{d}$ and $\mathbf{3 1} \mathbf{c}$,d. The tetrasubstituted alkenes $\mathbf{3 2 c}$, \mathbf{d} were not observed although this is not necessarily conclusive since the readily oxidizable tetrasubstituted double bonds might have been degraded if they were formed.

Since manganese(III) will oxidize tertiary radicals to cations, we examined the oxidative cyclization of 25 c without $\mathrm{Cu}(\mathrm{O}$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Two significant differences were noted in the cyclization in the absence of copper(II). The yield of acetates $\mathbf{3 0 c}$ and 31c (23% of a $3.5: 1$ mixture) increased at the expense of alkenes 28 c and 29 c (17% of a $5: 1$ mixture) suggesting that copper is, at least partially, oxidizing tertiary radicals 26 c and 27 c to alkenes by an oxidative elimination pathway. None of lactone 34 c is isolated. Instead, cyclopentane 37 (5\%) and trans-bicyclo[3.3.0]octanes 36 (12% of a $5: 1$ mixture) are obtained. Oxidation of 33 to 34 requires copper(II). In the absence of copper(II) primary radical 33 abstracts a hydrogen atom to give 37 or undergoes a slow, but precedented, ${ }^{18,39 \mathrm{~b}}$ cyclization to give the strained trans-bicyclo[3.3.0]octane radical 35 . Tertiary radical
(35) Hirama, M.; Shimizu, M.; Iwashita, M. J. Chem. Soc., Chem. Commun. 1983, 599.
(36) McGuirk, P. R.; Collum, D. B. J. Org. Chem. 1984, 49, 843.
(37) Kwon, T.; Snider, B. B. J. Org. Chem. In press.
(38) Jaggi, F. J.; Buchs, P.; Ganter, C. Helv. Chim. Acta 1980, 63, 872.
(39) For other triple cyclizations, see: (a) Lallemand, J. J.; Julia, M.; Mansuy, D. Tetrahedron Lett. 1973, 4461. (b) Beckwith, A. L. J.; Roberts, D. H.; Schiesser, C. H.; Wallner, A. Tetrahedron Lett. 1985, 26, 3349.

Scheme V

a, $R_{1}=R_{2}=H$
b, $R_{1}=\mathrm{Me}, \mathrm{R}_{2}=H$ c. $A_{1}=H_{1} R_{2}=M e$ d, $R_{1}=R_{2}=\mathrm{Me}$

35 is oxidized by manganese(III) to a cation which reacts with acetic acid to give acetate 36 .

Assignment of the stereochemistry of $\mathbf{2 8 - 3 1}$ is not straightforward. The stereochemistry of the major isomers 28a and 28c follow from the coupling constant between H 5 and H 6 which is $<1 \mathrm{~Hz}$ as expected (0.7 Hz) for a dihedral angle of $93^{\circ} .{ }^{30}$ The stereochemistry of 29 a follows from the coupling constant between H 5 and H 6 of 6 Hz as expected $(6.4 \mathrm{~Hz})$ for a dihedral angle of $38^{\circ} .30$ The ${ }^{1} \mathrm{H}$ NMR spectra of the other compounds do not aid in stereochemical assignment. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra to those of endo- and exo-6-methylbicyclo [3.2.1]octane ${ }^{38}$ permits assignment of stereochemistry to $\mathbf{2 8}$ and 29 . In the major isomer 28 with an exo substituent on C6, the absorptions for C8 are shifted upfield $1.4-3.9 \mathrm{ppm}$ from C 8 in 29 due to the γ gauche effect. Upfield shifts are also observed for C 7 in 28. In the minor isomer 29 with an endo substituent on C 6 , the absorptions for C 4 are shifted upfield 4.2-5.7 ppm from C4 in 28 due to the γ gauche effect. The stereochemistry of acetates $\mathbf{3 0}$ and $\mathbf{3 1}$ was assigned by analogy to 28 and 29.

The major product 28 formed in all cyclizations is the less hindered exo product. With a trans-crotyl side chain a $2: 1$ mixture of stereoisomers 26 and 27 is formed. Primary radical 5a should be formed as a similar mixture of stereoisomers since allyl and trans-crotyl side chains have similar steric requirements. Introduction of a second, cis-methyl group should and does increase the stereoselectivity of the second cyclization. A $5: 1$ mixture of 26 and 27 is formed with a prenyl side chain.
Triple Oxidation Free-Radical Cyclization. Triple oxidative free-radical cyclizations also proceed efficiently. ${ }^{39}$ Alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate ${ }^{17}$ with 2-(bromo-methyl)-1,4-pentadiene ${ }^{40}$ gives 38 in 71% yield. Oxidative cyclization of $\mathbf{3 8}$ gives 39% of $\mathbf{4 1 a}$ and 21% of $\mathbf{4 2}$. Cyclization of 38 should give a $2: 1$ mixture of $\mathbf{3 9 a}$ and $\mathbf{3 9 b}$. The major isomer 39a should cyclize rapidly to 40 a which should react with cupric ion to give 41a after oxidative elimination. The minor isomer 39b must cyclize to $\mathbf{4 0 b}$ which contains a highly strained trans-bicyclo[3.3.0]octane. This cyclization will be very slow. Radical 39b therefore reacts with cupric ion to give $\mathbf{4 2}$ after oxidative elimination. The isolation of a $2: 1$ mixture of 41 and 42 is consistent

Scheme VI

Scheme VII

with the anticipated formation of a $2: 1$ mixture of $\mathbf{3 9 a}$ and $\mathbf{3 9 b}$.
The oxidative cyclization of 43 was examined to determine whether the 6 -exo cyclization of 6 -heptenyl radical 44 in the second cyclization is faster than oxidation of $\mathbf{4 4}$ by cupric ion. Alkylation of methyl 6 -methyl-3-oxo-6-heptenoate ${ }^{35}$ with 4 -bromo-1-butene gives 50% of 43 . Oxidative cyclization of 43 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ gives only 31% of 45 , along with 5% of 46 and 8% of recovered 43 . The initial cyclization of $\mathbf{4 3}$ should proceed normally to give 44. Radical 44 is a 6 -heptenyl radical which will cyclize much more slowly than 5 -hexenyl radical $\mathbf{3}$ to give a primary radical that will react with cupric ion to give 45 . Reaction of cupric ion with $\mathbf{4 4}$ should give 46, endocyclic isomers, and tertiary acetates. The low material balance suggests that these products are formed and react further. Oxidation of tertiary radical 44 by cupric ion is competitive with cyclization of a 6 -heptenyl radical. We anticipated that a higher yield of 45 would be obtained with a lower concentration of cupric ion as observed in related systems. ${ }^{138}$ Surprisingly, less 45 was obtained when only 0.05 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{M})$ was used.

Formation of trans-Hydrindanones. Cyclization of 6-heptenyl radicals in the first cyclization proceeds very efficiently providing an attractive procedure for the preparation of trans-hydrindanones. Alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate with cis5 -bromo-2-pentene ${ }^{41}$ and trans-5-bromo-2-pentene ${ }^{41}$ gives 47a and 47b in 57% and 71% yield, respectively. Oxidative cyclization of $\mathbf{4 7}$ a gives 67% yield of a $25: 1$ mixture of 52 and 55 . Oxidative cyclization of $\mathbf{4 7 b}$ gives a 46% yield of a $2: 1$ mixture of $\mathbf{5 2}$ and 55. The stereochemistry of the major isomer 52 was established by analysis of the 'H NMR spectrum. The ring fusion hydrogen, H-7a, absorbs at $\delta 1.35$ (ddd, $J=11.8,11.7,4.2$). The two large

[^3]

vicinal coupling constants between $\mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-1$, and $\mathrm{H}-7 \mathrm{a}$ and H -7ax require that the ring fusion hydrogen be axial on the cyclohexane and pseudo-axial on the cyclopentane. Furthermore, the methyl group must be α on the cyclopentane so that there can be a large dihedral angle between $\mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-1$. Isomer $\mathbf{5 2}$ is the only one of the four possible diastereomers that can adopt a conformation which will give rise to two large vicinal coupling constants for $\mathrm{H}-7 \mathrm{a}$. The stereochemistry of the minor isomer $\mathbf{5 5}$ was assigned based on the vicinal coupling constant of 12.8 Hz between Hl and H 7 a, which requires a dihedral angle of $\approx 180^{\circ}$ between these protons.

The rate-determining step in the cyclization of $\mathbf{4 7}$ is formation of the manganese enolate 48 which reacts rapidly to give radical 49. ${ }^{13 \mathrm{~d}}$ The E geometry of the enol radical has been established in the cyclizations of $14 \mathrm{a}-\mathrm{c}$ discussed above. A 6 -exo cyclization of $\mathbf{4 9}$ can proceed through chair transition state $\mathbf{5 0}$ with an equatorial side chain to give $\mathbf{5 1}$ or through chair transition state 53 with an axial side chain to give 54. Cyclization of 5 -hexenyl radical 51 followed by oxidative elimination with cupric ion gives 52. Isomer 52 with a pseudoequatorial methyl group is formed to avoid severe steric repulsion between the carbethoxy and methyl groups which would be in a 1,3-diaxial relationship in the stereoisomer. Cyclization of 5 -hexenyl radical 54 followed by oxidative elimination with cupric ion gives 55 . Isomer 55 with an exo methyl group is formed to minimize steric repulsion. Cyclization to give 51 is the major process with $\mathbf{4 7 b}$ and the virtually exclusive process with 47a since there is a severe steric interaction between the methyl group (R_{1}) and axial hydrogen in 53a. Similar effects of alkene geometry on ring stereochemistry have been observed in other 6 -exo cyclizations. ${ }^{42}$

Triple Oxidative Free-Radical Cyclization. A highly selective oxidative triple cyclization ${ }^{39}$ can be carried out with $\mathbf{5 8}$ in which the methyl group on the double bond of 47a has been replaced by an allyl group. Alkylation of 3-butyn-1-ol with allyl bromide provides hept-6-en-3-yn-1-ol in 79% yield. ${ }^{43}$ Partial hydrogenation of the triple bond over Lindlar catalysts, nickel boride, ${ }^{44}$ or zinc ${ }^{45}$ to give cis- 3,6 -heptadien-1-ol (56) proved to be remarkably difficult. Reduction of the terminal double bond or isomerization
(42) Hanessian, S.; Dhanoa, D. S.; Beaulieu, P. L. Can. J. Chem. 1987, $65,1859$.
(43) Nicolaou, K. C.; Petasis, N. A.; Li, W. S.; Ladduwahetty, T.; Randall, J. L.; Webber, S. E.; Hernandez, P. E. J. Org. Chem. 1983, 48, 5400.
(44) Zâbransky, J.; CCerný, J. V.; Sedmera, P. Coll. Czech. Chem. Commun. 1976, 4l, 3294.
(45) Crombie, L.; Jenkins, P. A.; Roblin, J. J. Chem. Soc., Perkin Trans. l 1975, 1099. Aerssens, M. H. P. J.; Brandsma, L. J. Chem. Soc., Chem Commun. 1984, 735 and references cited therein. Roush, W. R.; Brown, R J. J. Org. Chem. 1982, 47, 1371.

Scheme IX

Scheme X

of the skipped diene invariably occurred. Selective reduction to give 56 in 74% yield was finally accomplished by reduction with iron fillings ${ }^{46}$ in aqueous isopropyl alcohol at reflux for 7 days. Reduction was much faster with iron dust but was accompanied by partial isomerization to the trans double bond. Reaction of 56 with mesyl chloride and triethylamine followed by displacement with NaI in acetone gave iodide 57 in 87% yield. Alkylation of the dianion ${ }^{16}$ of methyl allylacetoacetate with $\mathbf{5 7}$ gives $\mathbf{5 8}$ in 56% yield.
Oxidative cyclization of $\mathbf{5 8}$ gives monocyclic radical 59 which cyclizes to $\mathbf{6 0}$ with the allyl and methylene groups cis to each other and trans to the axial ester group to avoid severe steric interactions. Cyclization of 5 -hexenyl radical $\mathbf{6 0}$ followed by oxidative elimination with cupric ion gives $\mathbf{6 1}$ in 60% yield. The stereochemistry of $\mathbf{6 1}$ is assigned based on analysis of the coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectrum. H3a is coupled to the two H3's ($7,<1$ $\mathrm{Hz}), \mathrm{H} 8 \mathrm{a}(10 \mathrm{~Hz})$, and $\mathrm{H} 3 \mathrm{~b}(11 \mathrm{~Hz})$. H 8 a is coupled to the two H1's ($8,1 \mathrm{~Hz}$), the two H8's ($8,9 \mathrm{~Hz}$), and H3a (10 Hz). H3b, appearing upfield of all other absorptions as does H7a in 52, is coupled to the two H4's $(2,13 \mathrm{~Hz})$ and $\mathrm{H} 3 \mathrm{~b}(11 \mathrm{~Hz})$. These coupling constants which fit closely with those calculated for an MM2 minimized geometry of 61 are consistent only with the indicated geometry.

Formation of cis-Hydrindanones. Tandem cyclization reactions in which both double bonds are on the same chain provide access to hydrindanones $69 \mathrm{a}-\mathrm{c}$. Catalytic selenium dioxide oxidation ${ }^{47}$ of diene 62 affords allylic alcohol 63 in 51% yield. Corey-Kim bromination ${ }^{48}$ converts $\mathbf{6 3}$ into allylic bromide 64 in 66% yield.

[^4]Scheme XI

Alkylation of the dianion ${ }^{16}$ of the appropriate acetoacetate ester with 64 affords substrates $65 a-65 c$ in $50-55 \%$ yield. Oxidative cyclization of $\mathbf{6 5 a}$ provides 44% of bicyclic β-ketoester 70a. Similar treatment of 65 b and $\mathbf{6 5 c}$ affords cycloadducts 69 b and 69 c in 33% and 48% yield, respectively. Oxidation of $\mathbf{6 5}$ gives (E)-enol radical 66 which cyclizes to give monocyclic tertiary radical 67. 5 -Exo cyclization of 67 gives cis-fused radical 68 which reacts with cupric ion to give 69.

The stereochemistry of the ring fusion of 70a was tentatively assigned as cis since the β-ketoester exists as the enol tautomer. Collins and Tomkins ${ }^{49}$ reported that a closely related cis-hydrindane with a carbonyl rather than methylene group on the cyclopentane exists as the enol tautomer, while the trans-hydrindane exists as the keto tautomer with an equatorial ester group. The structure and stereochemistry of $\mathbf{7 0}$ a was established by conversion to dione 72. Hydrolysis of 70a with NaOH in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ followed by careful workup at $0^{\circ} \mathrm{C}$ with sodium dihydrogen phosphate to prevent double bond isomerization gives ketone $\mathbf{7 1}$ in 81% yield. Ozonolysis of 71 with reductive workup gives diketone $\mathbf{7 2}$ in 68% yield. The methyl singlet of $\mathbf{7 2}$ absorbs at $\delta 1.23$ as reported for the cis fused isomer. ${ }^{49}$ The methyl singlet of the trans fused isomer absorbs at $\delta 1.10 .49$
The ring fusion stereochemistry of 69 c was established by reductive removal of the chlorine with zinc dust in acetic acid to produce ethyl ester 70b in 71% yield whose ${ }^{1} \mathrm{H}$ NMR spectrum corresponds closely to that of methyl ester 70a. Ethyl ester 70b can be prepared in 57% overall yield from $\mathbf{6 5 c}$ by addition of zinc dust to the oxidative cyclization reaction prior to workup. ${ }^{13 \%}$ Irradiation of the 7 a-methyl group of 69 c led to a 13% NOE enhancement of the 3a-proton at $\delta 2.58$ further indicating a cis ring fusion in 69c. The cis ring fusion of 69b was established by conversion of $\mathbf{7 0 b}$ to $\mathbf{6 9 b}$. Methylation of $\mathbf{7 0 b}$ with sodium hydride and methyl iodide afforded a $2: 1$ mixture of 69 b and its diastereomer in 41% yield and the methyl ether in 6% yield. The formation of 69 b indicates that the ring fusion is cis. The stereochemistry at $\mathrm{C}-4$ cannot be unambiguously determined and is tentatively assigned based on analogy to the cyclization of $\mathbf{1 4 c}$ and previous cyclizations. ${ }^{13 \mathrm{a}, \mathrm{c}}$

Exclusive formation of cis-hydrindane 68 in the 5 -exo cyclization of $\mathbf{6 7}$ is expected based on ample precedent. ${ }^{1,18}$ This result appears to conflict with the formation of trans- rather than cis-decalins in oxidative cyclizations of radicals 73 and 75 which give 74 and 76. ${ }^{132 . b}$ Although 5 -exo cyclizations always give cis-hydrindanes, many examples of 6 -endo cyclizations giving trans-decalins are known. ${ }^{\text {c. } 2}$ It is also possible that 74 and 76 are formed by a cationic rather than a radical cyclization. We have obtained evidence which suggests that 73 is oxidized to the cation which then undergoes a Friedel-Crafts alkylation to give 74. ${ }^{136}$ We have not established that 75 is oxidized to the cation prior to cyclization, although this is entirely consistent with the observed product distribution. Clearly radical 67 cyclizes to 68 prior to oxidation,

[^5] (49) Collins, D. J.; Tomkins, C. W. Aus. J. Chem. 1977, 30, 443.

Scheme XII

since a decalin would be obtained from cyclization of the tertiary cation.

Oxidation of tertiary radicals $\mathbf{6 7}, 73$, and $\mathbf{7 5}$ should occur at the same rate. Cyclization of 67 must be much faster than cyclization of $\mathbf{7 3}$ and $\mathbf{7 5}$ if $\mathbf{6 7}$ cyclizes to radical 68, while 73 and 75 are oxidized to cations. Cyclization of radicals to double bonds is much faster than to aromatic rings. Cyclization of the 5 -hexenyl radical occurs with a rate constant of $10^{5} \mathrm{~s}^{-1}$, while cyclization of the 4 -phenylbutyl radical occurs with a rate constant of $\approx 10^{3}$ s^{-1}. 1,50 Therefore the cyclization of 73 should be roughly 100 times slower than the cyclization of 67 so that oxidation of $\mathbf{7 3}$ can precede cyclization. 5-Exo cyclization of 75 should be 10^{4} slower than 5 -exo cyclization of 67 due to steric interactions between the tertiary radical and the highly substituted double bond. ${ }^{1,18}$ 6 -Endo cyclization of 75 should be roughly 50 times slower than 5 -exo cyclization of $\mathbf{6 7}$. Therefore, formation of 76 by either a slow 6 -endo radical cyclization or by oxidation to a cation followed by electrophilic cyclization is consistent with the available data.
Oxidative Cyclization with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathbf{2 H}_{2} \mathrm{O}$ and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot$ $\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}-\mathrm{LiCl}$. Early studies demonstrated that use of both Mn (OAc$)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is necessary if a high yield of oxidatively terminated product is to be obtained. We examined the oxidative cyclization of 1 a with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ to determine the nature of the termination process in the absence of an efficient method for the oxidation of primary radical 5 . We obtained only 14% of 7 a . The other products are $77 \mathrm{a}(16 \%), 78 \mathrm{a}(6 \%)$, and 80 (1%). Oxidative cyclization proceeds normally to give a $2: 1$ mixture of exo isomer 5β and endo isomer 5α. Oxidation to give 7a is very inefficient. Hydrogen abstraction gives 77a and 78a, respectively. The endo isomer 5α undergoes a 1,5 -hydrogen atom shift to give α-keto radical 79 which undergoes oxidative β-hydrogen elimination to give enone $\mathbf{8 0}$.

Vinogradov and Nikishin have demonstrated that use of Mn$(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and LiCl results in oxidative addition and delivery of a chloride to the radical center, ${ }^{9, m}$ and we have shown that LiCl can be used to terminate oxidative monocyclizations. ${ }^{13 d, f}$ Treatment of 1 a with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 2 equiv of LiCl gives 50% of a $2: 1$ mixture of the expected chlorides 77b and 78b, 5% of recovered $\mathbf{1 a}, 5 \%$ of the acyclic α-chlorination product 81 , and 8% of a mixture of monocyclic chlorides 82 which result from delivery of a chloride to the monocyclic tertiary radical 3a.
The stereochemistry of 77 and 78 can be assigned unambiguously by analysis of their ${ }^{13} \mathrm{C}$ NMR spectra with 6 -methyl- and 5,6-dimethylbicyclo[3.2.1]octanes as model compounds. ${ }^{31,51}$ In

[^6]the major, exo isomer 77, C8- and the C5-methyl are shielded and absorb upfield. In the minor, endo isomer 78, C4- and the C6-methyl or methylene are shielded and absorb upfield.

Conclusion

Oxidative polycyclization with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{O}$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ should be generally useful in organic synthesis. Polycyclization followed by oxidative termination proceeds in high yield with good control of both the stereochemistry and the oxidative termination process. Initiation by oxidation of a β-dicarbonyl compound leads to a more highly functionalized product than initiation by treatment of an alkyl halide with $\mathrm{R}_{3} \mathrm{SnH}$. Oxidative termination inserts a double bond regiospecifically into the product. The substrates are prepared remarkably easily, usually by alkylation of mono- or dianions of β-dicarbonyl compounds. We are continuing to explore the scope and limitations of this reaction and are applying it to total synthesis.

Experimental Section

General Procedure for Alkylation of Methyl 2-Allylacetoacetate. Methyl 2-(2-Propenyl)-3-ox0-6-methylhept-6-enoate (1a). To a stirred suspension of $\mathrm{NaH}(0.536 \mathrm{~g}$ of a 60% dispersion in mineral oil, 0.013 mol) in THF (6 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of methyl 2-allylacetoacetate ($2.045 \mathrm{~g}, 0.013 \mathrm{~mol}$) in 3 mL of THF. The solution was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h at which time n-butyllithium (2.5 M in hexanes, $5.36 \mathrm{~mL}, 0.013 \mathrm{~mol}$) was added dropwise. The solution was stirred for 0.5 h at $0^{\circ} \mathrm{C}$, and methallyl chloride ($1.29 \mathrm{~mL}, 0.013 \mathrm{~mol}$) was added dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to room temperature, and stirred for an additional 2 h . The reaction was quenched by the dropwise addition of water (50 mL) and acidified with 1.5 M HCl . The aqueous phase was extracted with three portions of ether. The combined organic layers were washed with saturated $\mathrm{NaH}-$ CO_{3} solution and dried over anhydrous MgSO_{4}. Removal of the solvent in vacuo gave 2.400 g of crude product. Purification of 1.235 g by flash chromatography (silica gel deactivated with 10% water, $23: 1$ hexaneethyl acetate) gave $0.592 \mathrm{~g}(42 \%)$ of 1 a as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $5.74(\mathrm{ddt}, 1, J=7.0,10.0,17.5), 5.10(\mathrm{brd}, 1, J=17.5), 5.07(\mathrm{br} \mathrm{d}$, $1, J=10.0$), 4.75 (br s, 1), 4.65 (br s, 1), $3.74(\mathrm{~s}, 3), 3.58(\mathrm{t}, 1, J=7.5)$, $2.72(\mathrm{~m}, 2), 2.61(\mathrm{t}, 2, J=7.6), 2.29(\mathrm{t}, 2, J=7.6), 1.72(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 203.8, $169.6,144.0,134.2,117.5,110.3,58.3,52.4,40.4,32.2$, 30.9, 22.6; IR (neat) $3075,1742,1713,1642 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 68.54 ; \mathrm{H}, 8.63$. Found: $\mathrm{C}, 68.67 ; \mathrm{H}, 8.55$.

General Procedure for Oxidative Cyclization. Methyl 5-Methyl-6-methylene-2-oxobicyclo[3.2.1]actane-1-carboxylate (7a). To a stirred solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.804 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(0.300 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 13.5 mL of glacial acetic acid was added ketoester $1 \mathrm{a}(0.307 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 4 mL of glacial acetic acid. The reaction mixture was stirred at room temperature for 26 h at which time 100 mL of water was added. A solution of $10 \% \mathrm{NaHSO}_{3}$ was added dropwise to the mixture to decompose any residual $\mathrm{Mn}(\mathrm{OAc})_{3}$. The resulting solution was extracted with three $30-\mathrm{mL}$ portions of methylene chloride. The combined organic extracts were washed with saturated NaHCO_{3} solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuo gave $0.301 \mathrm{~g}(96 \%)$ of a yellow solid which was recrystallized from pentane to give pure $7 \mathrm{a}(86 \%)$. A second recrystallization from pentane provided an analytical sample: mp 71.8-72.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 5.08 (dd, $1, J=2.3,3.1,=\mathrm{CH}_{2}$), $5.01\left(\mathrm{dd}, \mathrm{I}, J=2.3,3.1,=\mathrm{CH}_{2}\right), 3.76(\mathrm{~s}, 3$, $-\mathrm{OCH}_{3}$), 2.94 (dddd, $\mathrm{I}, J=0.9,1.9,2.9,18.4, \mathrm{H} 7$ endo), 2.83 (br d, 1 , $J=18.4, \mathrm{H} 7 \mathrm{exo}$), 2.52 (dddd, $1, J=1.0,8.9,12.5,17.0, \mathrm{H} 3$ endo), 2.36 (ddd, $1, J=2.0,6.9,17.0, \mathrm{H} 3$ exo), 2.09 (br s, $2,2 \mathrm{H} 8$), 1.79 (ddd, 1 , $J=6.9,12.0,12.5, \mathrm{H} 4 \mathrm{exo}$), 1.68 (ddddd, $1, J=2.0,2.0,2.0,8.9,12.0$, H 4 endo $), 1.25\left(\mathrm{~s}, 3, \mathrm{C} 5-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $207.5(\mathrm{C} 2), 171.7(\mathrm{OC}=\mathrm{O})$, $153.5(\mathrm{C} 6), 106.3\left(=\mathrm{CH}_{2}\right), 62.2(\mathrm{Cl}), 52.1\left(\mathrm{OCH}_{3}\right), 47.0(\mathrm{C} 8), 44.0$ (C5). $40.3(\mathrm{C} 4), 39.9(\mathrm{C} 7) .35 .5(\mathrm{C} 3), 22.7\left(\mathrm{C} 5-\mathrm{CH}_{3}\right) ; \mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 3082$, 1743. 1717. $1660 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 69.21 ; \mathrm{H}, 7.74$. Found: C, 68.89 H, 7.88 .

Methyl ($1 \alpha, 4 \mathrm{a} \beta, 8 \mathrm{a} \beta$)-hexahydro-9-methylene-2-oxo-2H-1,4a-ethano-naphthalene-1-($\mathbf{5 H}$)-carboxylate (24) was prepared as described previously for 7 a from $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.6325 \mathrm{~g}, 2.40 \mathrm{mmol}), \mathrm{Cu}(\mathrm{O}-$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.2355 \mathrm{~g}, 1.20 \mathrm{mmol})$, and $21(0.2941 \mathrm{~g}, 1.20 \mathrm{mmol})$ in glacial acetic acid (11 mL). The reaction was stirred at room temperature for 25 h . Normal workup gave 0.2928 g of crude material. Purification of 0.274 g by flash chromatography (silica gel deactivated with methanol, 19:2 hexane-EtOAc) gave $0.199 \mathrm{~g}(73 \%)$ of 24 as a colorless solid. Recrystallization from pentane provided an analytical sample: mp $72.9-73.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $5.02\left(\mathrm{dd}, 1, J=1.9,2.3=\mathrm{CH}_{2}\right.$), 4.96 (dd. 1 , $\left.J=2.3,2.2,=\mathrm{CH}_{2}\right), 3.74\left(\mathrm{~s}, 3,-\mathrm{OCH}_{3}\right), 2.93$ (ddd, $1, J=2.2,2.3,17.7$, $\mathrm{H} 10 \alpha$), 2.83 (br ddd, $1, J=1.9,2.3,17.7, \mathrm{H} 10 \beta$), 2.53 (dddd, $1, J=$ 1.0.8.7. 12.0, 14.6, H3 endo), 2.42 (ddd, $1, J=6.3,12.0,12.4, \mathrm{H} 4$ exo),
$2.26(\mathrm{dd}, \mathrm{l}, J=6.3,14.6, \mathrm{H} 3 \mathrm{exo}), 2.16(\mathrm{~m}, \mathrm{l}), 2.02(\mathrm{br}$ ddd, $\mathrm{l}, J=1.7$, $3.3,12.4, \mathrm{H} 8 \mathrm{a} \alpha$), 1.84 (m. 2), 1.63 (m, l, H4 endo), $1.58-1.18$ (m, 5); ${ }^{13} \mathrm{C}$ NMR $208.3(\mathrm{C} 2), 171.9(\mathrm{OC}=\mathrm{O}), 154.3(\mathrm{C} 9), 105.1\left(=\mathrm{CH}_{2}\right), 64.5$ (C1), $53.9(\mathrm{C} 8 \mathrm{a}), 51.9\left(-\mathrm{OCH}_{3}\right), 45.4(\mathrm{C} 4 \mathrm{a}), 40.5(\mathrm{Cl} 0), 34.7(\mathrm{C} 3), 33.4$ (C4), 30.7 (C5-8), 25.8 (C5-8), 22.7 (C5-8), 21.3 (C5-8): IR (neat) $3075,1733,1706,1655 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 72.55 ; \mathrm{H}$, 8.12. Found: C, 72.94; H, 8.13.

Methyl 5-Hydroxy-7a α-methyl-1-methylene- 2,3,3a $\alpha, 6,7,7 \mathrm{a}$-hexa-hydro-1H-indene-4-carboxylate (70a). A solution of β-keto ester 65a $(0.457 \mathrm{~g}, 2.04 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(1.095 \mathrm{~g}, 4.08 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($0.409 \mathrm{~g}, 2.05 \mathrm{mmol}$) in 20 mL of glacial acetic acid was stirred for 5 days at $25^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.464 g of crude product. Flash chromatography on silica gel ($15: 1$ hexaneEtOAc) gave $0.200 \mathrm{~g}(44 \%)$ of 70a: NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 12.29 (enolic H), 4.87 (br t, $1, J=2.2$), 4.78 (br t, $1, J=2.3$), $3.77(\mathrm{~s}, 3)$, 2.49-2.29 (m, 3), 2.26 (dd, $1, J=6.1,3.4, \mathrm{H} 3 \mathrm{a} \alpha$), 2.21-2.11 (m, 2), 1.70 (ddd, $1, J=13.7,11.0,5.9), 1.38-1.34(\mathrm{~m}, 2), 1.09(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 173.4,171.7,160.7,104.0,99.7,51.3,45.0,42.7,31.5,31.1$, 30.8, 26.7, 23.8; IR (neat) 3075, 2950, 2920, 2870, 1655, 1615, 1440, 1420, 1355, 1310, 1280, 1240, 1220, 1190, 1060, $1000 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: 222.1256$. Found: 222.1245.

Ethyl 4 α,7a α-Dimethyl-1-methylene-5-oxo-2,3,3a $\alpha, 4,5,6,7,7 \mathrm{a}-\mathrm{octa}$ -hydro- $1 H$-indene- 4β-carboxylate (69 b). A solution of β-ketoester 65 b $(0.130 \mathrm{~g}, 0.52 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(0.277 \mathrm{~g}, 1.03 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}$ $(0.105 \mathrm{~g}, 0.52 \mathrm{mmol})$ in 5 mL of glacial acetic acid was stirred for 4 days at $25^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.124 g of crude product. Flash chromatography on silica gel ($15: 1$ hexane-EtOAc) gave 0.025 g of a $2: 1$ mixture of recovered starting material and 69b followed by $0.051 \mathrm{~g}(46 \%, 53 \%$ based on recovered starting material) of 69b: NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $4.87(\mathrm{t}, \mathrm{l}, J=2.0), 4.76(\mathrm{t}, \mathrm{l}, J=2.2$), $4.10(\mathrm{qd}, 2, J=7.2,1.8), 2.59-2.34(\mathrm{~m}, 4), 2.15$ (ddd, $1, J=10.3,8.1$, $3.8), 1.98-1.86(\mathrm{~m}, 1), 1.79(\mathrm{dt}, \mathrm{l}, J=10.2,4.5), 1.40(\mathrm{~s}, 3), 1.32-1.10$ $(\mathrm{m}, 2), 1.23(\mathrm{t}, 3, J=7.2), 1.19(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 210.4,172.2$, $160.9,103.6,61.0,56.7,55.4,43.8,35.9,31.8,31.6,30.1,26.4,22.4,13.8$; IR (neat) $3075,2980,2960,2875,1715,1650,1455,1370,1220 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$: $\mathrm{C}, 71.97 ; \mathrm{H}, 8.86$. Found: $\mathrm{C}, 71.82 ; \mathrm{H}, 8.91$.

Ethyl 4α-Chloro-7a α-methyl-1-methylene-5-oxo-2,3,3a $\alpha, 4,5,6,7,7 \mathrm{a}-$ octahydro- 1 H -indene-4 β-carboxylate (69 c). A solution of β-ketoester $\mathbf{6 5} \mathrm{c}$ $(0.253 \mathrm{~g}, 0.93 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(0.498 \mathrm{~g}, 1.86 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($0.186 \mathrm{~g}, 0.93 \mathrm{mmol}$) in 9 mL of glacial acetic acid was stirred for 2 days at $25^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.242 g of crude product. Flash chromatography on silica gel ($15: 1$ hexane-EtOAc) gave 0.011 g of recovered starting material followed by $0.121 \mathrm{~g}(48 \%$, 50% based on recovered starting material) of 69 c : NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) 4.94(\mathrm{t}, \mathrm{l}, J=2.0), 4.84(\mathrm{t}, \mathrm{l}, J=2.0) 4.25(\mathrm{q}, 2, J=7.0), 2.67$ (ddd, $1, J=12.8,8.3,4.8$), 2.58 (dd, $1, J=10.0,7.8, \mathrm{H} 3 \mathrm{a} \alpha$), 2.49-2.37 (m, 2), 2.15-1.67 (m, 5), $1.37(\mathrm{~s}, 3), 1.31(\mathrm{t}, 3, J=7.0)$. Irradiation of the 7a-methyl group led to 13% enhancement of the 3 a-proton at $\delta 2.58$ ppm indicating that the ring was cis fused. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 200.0$, $166.7,159.2,104.4,70.9,62.5,55.9,44.0,34.9,32.1,31.5,30.4,28.7$, 13.8; IR (neat) $3075,2960,2910,2890,2870,1740,1655,1460,1445$, $1365,1240,1090,1030,885 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{3}: \mathrm{C}$, $62.11 ; \mathrm{H}, 7.07$; Cl, 13.09. Found: $\mathrm{C}, 61.96 ; \mathrm{H}, 7.19 ; \mathrm{Cl}, 13.14$.

7a α-Methyl-1-methylene-2,3,3a $\alpha, 4,5,6,7,7 \mathrm{a}$-octahydro- $\mathbf{1 H}$-inden-5-one (71). A solution of β-ketoester $70 \mathrm{a}(0.084 \mathrm{~g}, 0.38 \mathrm{mmol})$ and sodium hydroxide ($\approx 0.19 \mathrm{~g}, 47.5 \mathrm{mmol}$) in 4 mL of methanol and 4 mL of water was refluxed for 24 h . The mixture was cooled to $0^{\circ} \mathrm{C}$. To the mixture was slowly added monobasic sodium phosphate until the pH was 5 . The mixture was extracted with $5 \times 10 \mathrm{~mL}$ of EtOAc and dried over MgSO_{4}. The solvent was removed in vacuo to afford $0.050 \mathrm{~g}(81 \%)$ of 71 : NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.92(\mathrm{t}, \mathrm{l}, J=1.9), 4.84(\mathrm{t}, \mathrm{l}, J=2.3), 2.52-2.43$ (m, 3), 2.32-2.09 (m, 3), 1.98 (ddd, $1, J=14.3,8.8,5.4$), $1.93-1.84$ (m, 1), $1.70(\mathrm{brdt}, 1, J=13.0,6.3), 1.42-1.17(\mathrm{~m}, 2), 1.22(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 213.0,158.7,104.4,47.2,43.5,42.3,37.4,34.1,30.2,29.0,26.0$; IR (neat) $3075,2950,2875,1720,1650,1450,1415,1370,1145,875$ cm^{-1}.

7a α-Methyl-2,3,3a $\alpha, 4,5,6,7,7 \mathrm{a}-$ octahydro-1 \boldsymbol{H}-Inden-1,5-dione (72). Ozone was bubbled through a solution of alkene $71(0.049 \mathrm{~g}, 0.30 \mathrm{mmol})$ in methanol (7 mL) for 1 min at $-78^{\circ} \mathrm{C}$. To the mixture was added 7 mL of dimethyl sulfide at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then overnight at $25^{\circ} \mathrm{C}$. The mixture was quenched with water (20 mL) and extracted with $5 \times 10 \mathrm{~mL}$ of ether. The combined organic layers were dried over MgSO_{4}, and the solvent was removed in vacuo to afford 0.068 g of crude product. Flash chromatography on silica gel ($5: 1$ hexane-EtOAc) gave $0.034 \mathrm{~g}(68 \%$) of $\mathbf{7 2 : 4 9}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.60(\mathrm{dd}, 1, J=14.8,6.3) 2.51-1.97(\mathrm{~m}, 8)$, 1.69-1.58 (m, 2), $1.25(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 210.7,47.2$. 44.5, 41.7, $37.0,35.1,29.8,25.0,20.5$, carbonyl carbon was not observed; IR (neat) $2960,2940,2880,1740,1720,1460,1420,1380,1280,1255,1145,1095$, $1055,915 \mathrm{~cm}^{-1}$.

Acknowledgment. This work was supported by the National Institutes of Health (GM-30528) and the National Science Foundation (CHE-8721312) and a Merck Sharp and Dohme sponsored 1988-1989 ACS Division of Organic Chemistry Fellowship to M.A.D.

Supplementary Material Available: Complete experimental details and spectral data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR) for the preparation of β-keto esters and all cyclizations not given in the Experimental Section (27 pages). Ordering information is given on any current masthead page.

Bornanesultam-Directed Asymmetric Synthesis of Crystalline, Enantiomerically Pure Syn Aldols

Wolfgang Oppolzer,* Julian Blagg, Inès Rodriguez, and Eric Walther
Contribution from the Département de Chimie Organique, Universite de Geneve, CH-1211 Genẽve 4, Switzerland. Received August 17, 1989

Abstract

N\)-acylsultams 2 furnish, via aldolization of their enolates 16 with aldehydes, diastereomerically pure, crystalline syn aldols. The absolute configuration of the product is controlled by the choice of the enolate counterion: $\mathbf{1 6}, \mathrm{M}=\mathrm{B} \rightarrow$ $3 ; 16, \mathrm{M}=\mathrm{Li}$ or $\mathrm{Sn}(\mathrm{IV}) \rightarrow 5$. Hydroperoxide-assisted hydrolysis/esterification or reductive cleavage provided enantiomerically pure methoxycarbonyl aldols (12 and 13) or 1,3-diols (11) with recovery of auxiliary 1 . The chiral serricornin precursor 14 was thus prepared.

Asymmetric aldol reactions have attracted widespread interest over the past decade, promoting considerable gain in insight and methodology. ${ }^{1}$ Nevertheless, applications in synthesis would greatly benefit from the prospect of purifying the initially formed aldol products by crystallization. As a complement to a previous communication, ${ }^{2}$ this article reports the first example which meets this and other relevant criteria (accessibility, versatility of chiral auxiliary as well as yields, metal-directed diastereo- and π-face selectivities of reactions).

Results

Sultam 1 (as well as its antipode readily available on a kg -scale ${ }^{3}$) were smoothly acylated with acylchlorides/ NaH to provide starting acylsultams 2.

Boron-Mediated Aldolizations. We first addressed the firmly established dibutylboryl enolate methodology. ${ }^{4}$ Treatment of acylsultams 2 with freshly prepared dibutylboryl triflate/ $\mathrm{EtN}(i \mathrm{Pr})_{2}$ (1.1 mol equiv) at $-5^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by addition of an aldehyde $\mathrm{R}^{2} \mathrm{CHO}$ at $-78^{\circ} \mathrm{C}$ provided, on workup, syn aldols 3 (Scheme I, Table I entries 1, 2, 4, 6-9, 11, 12). Although major isomers $\mathbf{3}$ were usually isolated in good yields, conversions $\mathbf{2} \rightarrow$ 3 often remained incomplete. Employing an excess of $\mathrm{Bu}_{2} \mathrm{BOTf} / \mathrm{EtN}(i \operatorname{Pr})_{2}$ resulted in lower stereoselectivities.

More conveniently and more efficiently, aldols 3 were obtained by using in situ prepared diethylboryl triflate/ $\operatorname{EtN}(i \operatorname{Pr})_{2}(2 \mathrm{~mol}$

[^7]
equiv, entries $3,5,10$) following a protocol described for N acyloxazolidinone/azetidinone aldolizations. ${ }^{5}$ HPLC analysis of the crude products 3 showed (independent of the boryl triflate) very high diastereomeric purity which was increased to virtually

[^8]
[^0]: (1) (a) Hart, D. J. Science 1984, 223, 883. (b) Geise, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford and New York, 1986. (c) Surzur, J.-M. In Reactive Intermediates, Vol. 2; Abramovitch, R. A., Ed.; Plenum: New York, 1982; pp 121-295. (d) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073. (e) Beckwith, A. L. J.; Ingold, K. U. In Rearrangements in Ground and Excited States, Vol. 1 ; de Mayo, P., Ed.; Academic Press: New York, 1980; pp 162-310. (f) Ramaiah, M Tetrahedron 1987, 43, 3541. (g) Curran, D. P. Synthesis 1988, 417 and 489.
 (2) (a) Breslow, R.; Olin, S. S.; Groves, J. T. Tetrahedron Lett. 1968, 1837 (b) Julia, M. Acc. Chem. Res. 1971, 4, 386.
 (3) (a) Kraus, G. A.; Landgrebe, K. Tetrahedron Lett. 1984, 25, 3939. (b) Curran, D. P.; Chen, M.-H.; Kim, D. J. Am. Chem. Soc. 1986, 108, 2489. (c) Curran, D. P.; Kim, D. Tetrahedron Lett. 1986, 27, 5821
 (4) (a) Bhandal, H.; Pattenden, G.; Russell, J. J. Tetrahedron Lett. 1986 27, 2299 and references cited therein. (b) Patel, V. F.; Pattenden, G.; Russell, J. J. Ibid. 1986, 27, 2303. (c) Baldwin, J. E.; Li, C.-S. J. Chem. Soc., Chem. Commun. 1987, 166. (d) Pattenden, G. Chem. Soc. Rev. 1988, 17, 361
 (5) For a review of manganese(III) acetate as an oxidant, see: de Klein, W. J. In Organic Synthesis by Oxidation with Metal Compounds; Mijs, W. J., de Jonge, C. R. H., Eds.; Plenum Press: New York, 1986; pp 261-314 See also references cited in Breuilles, P.; Uguen, D. Bull. Soc. Chim. Fr. 1988, 705.
 (6) (a) Heiba, E. I.; Dessau, R. M.; Koehl, W. J., Jr. J. Am. Chem. Soc. 1968, 90, 5905. (b) Heiba, E. 1.; Dessau, R. M. Ibid. 1971, 93, 524. (c) Heiba, E. l.; Dessau, R. M. Ibid. 1972, 94, 2888. (d) Heiba, E. 1.; Dessau, R. M.: Rodewald, P. G. Ibid. 1974, 96, 7977. (e) Heiba, E. l.; Dessau, R M. J. Org. Chem. 1974, 39, 3456. (f) Heiba, E. l.; Dessau, R. M. Ibid. 1974, 39, 3457. (g) Heiba. E. l.; Dessau, R. M.; Williams, A. L.: Rodewald, P. G. Org. Synth 1983. 61. 22.

[^1]: (26) Allen, F. J.; Johnson, O. H. J. Am. Chem. Soc. 1955, 77, 2871. Welch, S. C.; Assercq, J.-M.; Loh, J.-P. Tetrahedron Lett. 1986, 27 , 1115.
 (27) Danheiser, R. L. In Strategies and Tactics in Organic Synthesis; Lindberg. T., Ed.; Academic Press: Orlando, FL, 1984; pp 21-70.
 (28) Delongchamps, P.; Rowan, D. D.; Pothier, N.; Saunders, J. K. Can. J. Chem. 1981, 59, 1122.
 (29) Boeckman, R. K., Jr.; Naegely, P. C.; Arthur, S. D. J. Org. Chem. 1980, 45, 752. Goldsmith, D. J.; Thottathil, J. K. Tetrahedron Lett. 1981, 22, 2447. White, W. L.; Anzeveno, P. B.; Johnson, F. J. Org. Chem. 1982, 47, 2379. Boeckman, R. K., Jr.; Napier, J. J.; Thomas, E. W.; Sato, R. I. J. Org. Chem. 1983, 48, 4152.

[^2]: (32) Whitesell, J. K.; Matthews, R. S. J. Org. Chem. 1977, 42, 3878 (33) (a) Petrov, A. A.; Esakov, S. M.; Ershov, B. A. J. Org. Chem. USSR 1976, $l 2,774$; Zh. Org. Khim. 1976, 12, 775. (b) Raban, M.; Noe, E. A.; Yamamoto, G. J. Am. Chem. Soc. 1977, 99, 6527. (c) Raban, M.; Haritos, D. P. J. Am. Chem. Soc. 1979, 101, 5178 . (d) Cambillau, C.; Guibe, F. Can. J. Chem. 1982, 60, 634. (e) Cambillau, C.; Bram, G.; Corset, J.; Riche, C. Can. J. Chem. 1982, 60, 2554.
 (34) Nenitzescu, C. D.; Przemetzky, V. Chem. Ber. 1941, 74, 676.

[^3]: (40) Duboudin, J. G.; Jousseaume, B. J. Organomet. Chem. 1979, 168, 1.

[^4]: (46) Morris, S. G.; Magidman, P.; Herb, S. F. J. Am. Oil Chem. Soc. 1972, 49, 505. Schrauzer, G. N.; Guth, T. D. J. Am. Chem. Soc. 1976, 98, 3508.
 (47) Umbreit, M. A.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526.

[^5]: (48) Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 4339.

[^6]: (50) Data in ref 24 establish that the first-order rate constant for the cyclization of the 4 -phenylbutyl radical is 10^{3} slower than the second-order rate constant for oxidation by cupric ion. A rate value of $10^{3} \mathrm{~s}^{-1}$ follows from a value of $10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for oxidation by cupric ion. ${ }^{21 \mathrm{c}, \mathrm{c}, 222^{-24}}$
 (51) Whitesell, J. K.; Minton. M. A. Stereochemical Analysis of Alicyclic Compounds by C-13 NMR Spectroscopy; Chapman and Hall: London, 1987; p 128. Matveeva, I. A.; Sokolova, 1. M.; Pekhk, T. I.; Petrov, A. A. Neftekhimiya 1975, 15, 646.

[^7]: (1) Reviews: Evans, D. A.; Nelson, J. V.; Taber, T. R. Topics Stereochem. 1982, 13, I. (b) Heathcock, C. H. Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, Part B, p 111. (c) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem. 1985, 97, 32; Angew. Chem., Int. Ed. Engl. 1985, 24, 1. (d) Braun, M. Angew. Chem. 1987, 99, 24; Angew. Chem., Int. Ed. Engl. 1987, 26, 24. More recent work: Masamune, S.; Sato, T.; Kim, B. M.; Wollmann, T. A. J. Am. Chem. Soc. 1986, 108, 8279. Oppolzer, W.; Marco-Contelles, J. Helv. Chim. Acta 1986, 69, 1699. Kobayashi, S.; Mukaiyama, T. Chem. Lett. 1989, 297. Bold, G.; Duthaler, R. O.; Riediker, M. Angew. Chem. 1989, 101, 491; Angew. Chem., Int. Ed. Engl. 1989, 28, 497. Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, lll, 5493.
 (2) Oppolzer, W. Pure Appl. Chem. 1988, 60, 39.
 (3) Oppolzer, W.; Chapuis, C.; Bernardinelli, G. Helv. Chim. Acta 1984, 67, 1397. Vandewalle, M.; Van der Eycken, J.; Oppolzer, W.; Vullioud, C. Tetrahedron 1986, 42, 4035. Davis, F. A.; Towson, J. C.; Weismiller, M. C.; Lal, S.; Carroll, P. J. J. Am. Chem. Soc. 1988, 110, 8477. Manufactured in kg amounts by Oxford Chirality, Oxford, UK.
 (4) (a) Masamune, S.; Choy, W.; Kerdesky, F. A. J.; Imperiali, B. J. Am. Chem. Soc. 1981, 103, 1566 . (b) Evans, D. A.; Bartroli, J.; Shih, T. L. Ibid. 1981, 103, 2127.

[^8]: (5) Fuentes, L. M.; Shinkai, I.; Salzmann, T. N. J. Am. Chem. Soc. 1986, 108, 4675.

